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Abstract

Gold standard immunoassays depend on specific affinity reagents for accurate molecular quantifica-
tion. Any cross-reactivity of affinity reagents, wherein the reagent non-specifically binds to unintended
molecules, can create false positive binding signals and result in inaccurate quantification of analytes.
Mitigating cross-reactivity represents one of the greatest challenges in molecular diagnostics, and remains
an unsolved problem. To instead overcome the effects of cross-reactivity, we present a mathematical
framework that uses generalized binding equations and noise estimation to enable the use of multiple
cross-reactive reagents for multiplexed molecular quantification. As a proof-of-concept, we experimen-
tally demonstrate accurate quantification of a small molecule for which no specific affinity reagents are
available, even at high concentrations of a cross-reactive molecule. Furthermore, this robust schema
yields well-defined bounds of quantification that make it easier to assess the quality of assay results and
predicts under which conditions assay performance is likely to break down. This work turns cross-reactive
affinity reagents, which were previously a liability, into an asset for achieving accurate quantification of
analytes.

The ability to measure medically relevant analytes with high accuracy is crucial as their concentrations
often provide valuable insights into disease status and therapeutic response. To achieve accurate molecular
quantification, gold standard immunoassays are highly reliant on specific affinity reagents. If an affinity
reagent exhibits cross-reactivity, wherein the reagent binds to unintended molecules, false positive binding
signals can be produced and thus hinder the accurate quantification of protein and small molecule analytes.

Despite this reliance on specificity, even antibodies, which are a benchmark for affinity reagents, suffer
from cross-reactivity. This is evidenced by a large scale study of 11,000 antibodies, in which over 95%
exhibited cross-reactive binding, often to non-target analytes that were in high abundance or shared sequence
homology [1]. A more recent study of 153 antibodies observed that 84% were cross-reactive, and notably,
about 47% of these unintended analytes bound even stronger than the intended target protein itself, posing
a substantial obstacle to accurate quantification [2]. Unfortunately, researchers often incorrectly assume that
reagents are specific and thus inadvertently dismiss cross-reactive signals as constant background signals,
leading to inaccurate conclusions [3]. Cross-reactivity thus poses a serious obstacle for diagnostic accuracy
and sensitivity — a problem that is only exacerbated as multiplexed immunoassays scale up [4].

Several methods have been developed to mitigate the effects of cross-reactivity through both assay design
and affinity reagent development methods. For example, gold-standard methods such as enzyme-linked
immunosorbent assays (ELISAs) rely on the recognition of different epitopes by multiple affinity reagents
to drastically lower the effects of cross-reactivity [3, 4, 5]. Unfortunately, smaller analytes, such as short
peptides (e.g., hormones) and small molecules (e.g., drugs and metabolites), often lack multiple epitopes that
can be recognized simultaneously, and thus depend on single-reagent assays such as competitive ELISAs.
For these assays, the accuracy of the readout is entirely dependent on the availability of high-specificity
reagents. However, developing such reagents is extremely challenging, especially for low-molecular-weight
analytes, and remains an unsolved problem for many important biomarkers [6, 7, 8]. As such, there is an
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urgent unmet need for strategies that can achieve accurate analyte quantification even if the affinity reagents
themselves inevitably retain some level of cross-reactivity.

As a solution to the cross-reactivity problem, we have developed a mathematical framework for accurate
quantification that is robust to the cross-reactivity of affinity reagents — which is, to our knowledge, the first
such approach described in literature. To overcome the challenges of using cross-reactive affinity reagents,
our framework comprises three features: 1) A generalized equilibrium-based model [9, 10] to account for
cross-reactivity, 2) Employment of multiple affinity reagents to resolve individual contributions of analytes,
and 3) Accounting for noise to ensure robust measurement and solution stability. We present experimental
results to validate our approach with a fluorescence-based assay by quantifying a small molecule metabolite,
kynurenine (kyn), for which no specific affinity reagent is available. Using cross-reactive affinity reagents, we
quantified kyn in solution with moderate to high concentrations of cross-reactive non-target interferent. As
expected, a conventional model for analyte-reagent binding that does not account for cross-reactivity provided
highly inaccurate results with deceptively narrow ranges of quantification. Conversely, using our framework
we accurately determine a narrow concentration range for kyn despite even higher concentrations of cross-
reactive interferent. Furthermore, we present how our framework can predict the quantitative precision
of such cross-reactive assays with visual intuition, which makes it possible to both identify scenarios in
which such assays can achieve robust quantitation and identify opportunities for further optimization of
assay performance. Our work thus offers an avenue to achieving robust analyte quantification even with
cross-reactive affinity reagents, allowing for enhanced molecular measurements without relying on stringent
affinity reagent selection or complex assay design.

Results and Discussion

A model for cross-reactive affinity reagents

To begin, we provide a model that describes the total signal output si from an affinity reagent Ai in a
solution of n analytes. When cross-reactive, Ai can bind to any one of the n analytes Tj at a time, where j

ranges from 1 to n. Each of these n interactions occur with distinct association constants Ki,j
A , and can be

depicted as follows:

Ai +Tj

Ki,j
A−−⇀↽−− Ai ·Tj where Ki,j

A =
[AiTj ]

[Ai][Tj ]
(1)

Using the basic assumptions stated in Methods 1.1, we can model the equilibrium state of this system
and derive the following equation for the normalized output signal si from reagent Ai:

si =

∑n
j=1 K

i,j
A [Tj ]

1 +
∑n

j=1 K
i,j
A [Tj ]

(2)

For simplicity, we analyze and visualize this model (and our framework) in the context of a cross-reactive
affinity reagent A1 binding to just two analytes: a desired analyte T1, and an interferent analyte T2 (Fig. 1a).
In this case, the output signal s1 from reagent A1 reduces to:

s1 =
K1,1

A [T1] +K1,2
A [T2]

1 +K1,1
A [T1] +K1,2

A [T2]
(3)

Since A1 can bind to both T1 and T2, s1 is a function of contributions from [T1] and [T2] (Fig. 1a).
In Figure 1b, we plot Equation 3 for [T1] at different concentrations of T2 (which is also a function of the
association constants K1,1

A and K1,2
A ). As [T2] increases, the lower limit of the [T1] to s1 binding curve shifts

upward, i.e., the magnitude of s1’s response to an increase in [T1] also depends on [T2]. This shift in the
lower limit of the signal highlights the cause for concern if [T2] changes or is not expected to affect s1, as in
the case of assuming specificity with the conventional Langmuir isotherm (when [T2] = 0) [11].
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Figure 1: The signal output from a cross-reactive affinity reagent is greatly affected by the concentration of
non-target analyte. a) An affinity reagent, A1 (aptamer in this cartoon) can bind to both the target analyte
(T1) and any cross-reactive analyte (T2). When incubated with a mixture of T1 and T2, A1 produces a signal
s1 that is composed of contributions from both T1 and T2. b) The dynamic range of the signal intensity
s1 from reagent A1 decreases with increasing [T2]. Colors represent different values of [T2] relative to the
reagent’s association constant, K1,2

A . c,d) Heatmap of signal across the feasible range of [T1] and [T2] for

c) reagent A1, with K1,1
D = 10 mM, K1,2

D = 0.1 mM and d) reagent A2 with K2,1
D = 0.1 mM, K2,2

D = 10
mM. The color scale represents the normalized signal s1 and s2 from each affinity reagent, where blue is no
signal (= 0) and yellow is saturated binding (= 1). The red cross indicates an example concentration where
both [T1] and [T2] are 0.1 mM. Red and orange curves in b and c respectively illustrate the range of possible
concentrations that could produce the same output signals. e) The overlap of these curves is the solution
for [T1] and [T2] given the indicated values of s1 and s2 from A1 and A2, respectively.

To further elucidate the effect of different combinations of [T1] and [T2] on the signal s1 from A1, we have
plotted Equation 3 as a two-dimensional heatmap for a scenario in which our affinity reagent binds to T1

and T2 with equilibrium dissociation constants KD = 1/KA of 10 mM and 0.1 mM, respectively (Fig. 1c).
Given only the value of s1, we cannot accurately determine a value for [T1] or [T2], as Equation 3 yields a
wide set of solutions that form the red highlighted L-curve shown in Figure 1c. In this example, [T1] could
range from 0 to 10mM.

To narrow the possible space of concentrations for T1 and T2, we can introduce another affinity reagent
A2 to provide an additional signal s2. To this end, these two affinity reagents need to be distinct in terms
of having linearly independent association constants for the two analytes (i.e., K1,1

A K2,2
A ̸= K1,2

A K2,1
A ). The

signal from each affinity reagent can be handled separately, assuming the affinity reagent concentrations are
much lower than the analyte concentrations. Since the KA values in our example are linearly independent,
the solution space for A2 is different from that of A1 (Fig. 1d). By using both affinity reagents to measure
the same mixture of two analytes, we obtain two signals that correspond to the L-curves highlighted on
the two heatmaps. Superimposing these curves, the overlap point represents the space of [T1] and [T2] that
simultaneously explains the signal s1 from A1 and the signal s2 from A2 (Fig. 1e). The concentration of the
sample can now be resolved analytically to show that [T1] and [T2] in this example are both 0.1 mM.

This approach of overlapping signals from affinity reagents is theoretically applicable for an arbitrary
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number of affinity reagents and analytes using Equation 21. However, as we increase the number of analytes
and affinity reagents beyond two, the solution space from each analyte is unlikely to neatly overlap in a
single point due to the compounded effects of noise, such that analytical solutions become intractable. This
means that analytical solutions using Equation 2 are only dependable when the noise is negligible (see SI
Section 2.2), and we must incorporate noise into our framework—which we do in the following section.

Accounting for noise improves ability to find a solution for analytes

It is essential to account for the sample noise profiles associated with these signals to robustly resolve the
analyte concentrations. To incorporate noise into our model, we derive the 95% confidence interval for the
measurement signals. We use measurement replicates si,r to define upper and lower bounds on the mean
signal s̄i, which contains the true noise-free signal si,true with a probability of 95%. We assume that our
noise follows a Gaussian distribution with some standard deviation σ, such that (si,true − si,r) ∼ N (0, σ2).

With R replicate measurements, we calculate the 95% confidence interval by first computing the mean
signal intensity of our measured samples s̄i:

s̄i =
1

R

R∑
r=1

si,r, (4)

and the sample standard deviation SDi:

SDi =

√√√√ 1

R− 1

R∑
r=1

(si,r − s̄i)2. (5)

We can then denote the 95% confidence interval as:

[s̄i − t
SDi√
R

; s̄i + t
SDi√
R

]. (6)

with t being the 97.5th percentile of the t-distribution with (R− 1) degrees of freedom. Defining ∆si =
tSDi√

R
, with 95% confidence we have:

s̄i −∆si ≤
∑n

j=1 K
i,j
A [Tj ]

1 +
∑n

j=1 K
i,j
A [Tj ]

≤ s̄i +∆si (7)

This confidence interval results in a thickening of the plotted curve, which encompasses the true analyte
concentrations within a 95% confidence interval. The overlap of these broader curves for all the affinity
reagents defines a set of analyte concentrations that, while not having any statistical guarantees, in practice,
usually include the true analyte concentration while also accounting for measurement noise.

We can then solve for the upper and lower bounds of each analyte’s concentration range. In order to
visualize concentrations spanning several orders of magnitude, we have been plotting this solution space on a
log-log scale. However, we can more easily solve for these bounds mathematically in the linear domain. Thus
we reformulate Equation 7 above into a constraint on a linear combination of the analyte concentrations
[Tj ]:

s̄i −∆s

1− s̄i +∆s
≤

n∑
j=1

Ki,j
A [Tj ] ≤

s̄i +∆s

1− s̄i −∆s
(8)

We can further constrain the size of the solution space by adding another set of inequalities that capture
the physical limits of each molecule Tj , which range from 0 to the solubility limit Tmax,j . These limits can

1As the number of cross-reactive analytes increases, the exact handling of the analytes must change for experimental tractabil-
ity. We provided potential methods to handle three cases of cross-reactivity—high, low and constant cross-reactivity—in SI
Section 2.1.
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also be further constrained by other physiological bounds. Based on these linear constraints, we can use
off-the-shelf convex optimization solvers to calculate the range of concentrations expected for each analyte
(Method 1.2).

Experimental validation of our model to quantify analytes with a pair of cross-
reactive affinity reagents

To experimentally verify our approach, we performed an assay to quantify the tryptophan metabolite kynure-
nine (kyn), for which no specific affinity reagent exists. We used affinity reagents by Yoshikawa and Wan et
al. that were developed to specifically bind to many structurally-similar metabolites within the kynurenine
pathway including xanthurenic acid (xa) [7], but none were found to be specific only to kyn. Specifically, we
used a cross-reactive reagent (SK1) that binds to both kyn and xa, and a xa-specific affinity reagent (XA1).
Employing the same fluorescence assay protocol they used, we quantified kyn in the presence of xa.

We first re-established the dissociation constants of the affinity reagents to both analytes. We confirmed
that SK1 is indeed cross-reactive with a KD of 0.13 mM for xa and ∼10-fold poorer affinity for kyn (KD =
1.98 mM, Fig. 2a). We also determined that XA1 has a KD of 0.64 and 264 mM for xa and kyn, respectively.
We note that 264 mM is far beyond the solubility limit of kyn (19 mM in water [12]), and thus XA1 can be
considered a highly selective affinity reagent. These values are comparable to those reported by Yoshikawa
and Wan et al. (SI, Table 2-3).

For initial demonstration of our capacity for kyn quantification in presence of xa, we created five samples.
In each sample, the concentration of kyn was maintained at 1mM, while the concentration of xa varied
ranging from 3µM to 316µM. Based on the KD fits, we can plot signal heatmaps for both SK1 (Fig. 2b)
and XA1 (Fig. 2c), alongside the feasible concentrations from their respective signal readouts(Fig. 2d-h). We
then convert these measurements into lower and upper bounds for the concentrations of kyn and xa using our
above-described quantification method. As an exemplar, with an input concentration of 1 mM kyn and 3µM
xa, we obtain the signal as highlighted in Figure 2b-c. Using the signal from each affinity reagent by itself, we
observe a wide range of possible kyn concentrations, spanning from 0-3 mM. By combining the information
from both affinity reagents, as shown in Figure 2d, we greatly narrow down the feasible concentration of
kyn. The true concentration of kyn (1 mM) falls within the calculated bounds of the overlapped curves
(0.87–1.25 mM), which produces a narrow range with log error (= (log10(measured) − log10(true))) ranging
from -0.06 to 0.10 (Fig. 2i).

To assess the performance of our model, we compared our results against a ‘näıve’ model, which does
not account for cross-reactivity, by applying our confidence interval and linear programming framework to
a basic Langmuir binding equation. The näıve model consistently overestimated the concentration of kyn
in the presence of the interferent xa (Fig. 2i, blue; SI Table 4). In fact, the näıve model only predicted an
accurate concentration range for kyn at the lowest concentration of xa. But even then, the range of feasible
kyn concentrations was skewed towards higher values, with a log error range of -0.02 and 0.10. With increased
[xa] in subsequent samples, the näıve model predicted narrow concentration ranges that are misleading and
highly inaccurate since the lower bounds of these ranges consistently exceeded the true concentration. The
näıve model’s quantitative prediction increasingly differed from reality with upper and lower bound log errors
ranging from 0.01 to 0.69 log error. In contrast, by accounting for cross-reactivity, our model was able to
calculate a range of kyn concentrations that were accurate even in the presence of extremely high [xa]. For the
samples with xa concentrations below 100µM, the calculated ranges were also very narrow with largest lower
and upper log errors of -0.05 and 0.18 (Fig. 2i, orange; SI Table 5). For the samples with greater than 100µM
xa, these ranges became much wider, with the upper end of the log error extending out to 0.44 with no lower
bound for the sample with 316µM xa. Despite the wider ranges calculated for these high concentrations,
it is important to note that our model predictions still reliably encompass the true concentration of kyn,
in contrast to the fully inaccurate predictions of the näıve model. The wide quantification ranges provided
for these higher xa concentrations are a result of fundamental limitations of the affinity reagents and assay
design, and not of our framework2. We delve into predicting when such quantification ranges will be narrow,

2As [xa] approaches the KD of SK1 to xa (K1,2
D = 0.13 mM), the sensitivity that SK1 has to [kyn] drastically drops. In SI
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Figure 2: Experimentally assessing our quantification framework with cross-reactive affinity reagents. a)
Normalized binding curves for affinity reagents SK1 (red) and XA1 (orange) to kynurenine (kyn; solid
lines) and xanthurenic acid (xa; dashed lines). b, c) Signal heatmaps with feasible analyte concentrations
from b) SK1 and c) XA1. Color scale shows normalized signal intensity. Highlighted L-curves (red and
orange) indicate 95% confidence intervals for feasible analyte concentrations that could yield the normalized
signal produced in the presence of 3µM xa and 1 mM kyn (marked with a red cross). d-h) Overlapped
95% confidence interval curves produced by the two affinity reagents at the same kyn concentration (1
mM) but increasing xa concentrations. d) Zoomed view of overlapping region with bar indicating the
estimated concentration range for kyn. i) Estimated concentration ranges of kyn for each sample mixture
using our method (orange), compared to assumption of specificity (blue). Red crosses mark the true input
concentration (1 mM kyn). Exact values presented in SI Table 4-5.

and how quantification can be improved in the following section.

A model for predicting the range of quantification for assays

Our experimental quantification above demonstrated narrow quantification ranges within a certain regime of
concentrations given the affinity reagents. Beyond such a regime however, the ranges become much wider and
thus become less useful for conventional quantification use cases, despite being technically accurate. Here,
to better understand what cases will produces narrow or wide ranges of quantification, we predict the ‘range
of quantitation’ (ROQ), which is a metric for how tightly constrained the overlap of the confidence intervals
is. We furthermore demonstrate how we can use such ROQ predictions to rationally improve quantification.

Figure 4, we visually show that even with perfect knowledge of [xa] this drop in sensitivity forces the range of kyn quantification
in this regime to be very large. This is also generally observed in the binding curves with increased T2 as previously depicted
in Figure 1b.
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The ROQ will increase as an affinity reagent approaches saturation or when the signal output from the
analyte is close to the assay’s background. These boundaries are highly dependent on the coefficient of
variance CV and background variance bg of the assay and can thus be predicted without explicitly running
experimental samples for every likely concentration. To predict the ROQ for a given set of affinity reagents
and expected analyte concentrations, we can employ a three-step procedure. First, we use Equation 2 to
calculate the expected measurement signal for s̄i given analyte concentrations. This makes the implicit
assumption that our simulated measurements are centered around the true noise-free readout. Next, we esti-
mate the sample noise standard deviation SDi from Equation 7. This can be established with experimental
data by estimating the noise standard deviation from binding curve measurement replicates. Signal noise is
partly a product of bg, but is also expected to increase relative to the signal magnitude with a given CV .
Accordingly, we have updated SDi to be a function of CV and bg (see Methods 1.6 for more detail). These
variables can be determined either by literature search or empirically using binding curve data.

Finally, we apply our model to simulated values of s̄i and ∆si = tSDi√
R

to calculate the upper and

lower bounds for every analyte-affinity reagent pair, which we then convert to the estimated ROQ. We
define the ROQ as the log10-difference between the upper and lower bounds of the quantification range:
ROQ = log10(upper bound) − log10(lower bound), such that an increase of ROQ by one translates to a
quantification range that is wider by one order of magnitude. The numerical value of the ROQ that is useful
depends on the use case. However, for general intuition, a ROQ of 0.5 indicates that the true value (if the
range encompasses it) lies within a 0.5 order of magnitude window, which is generally accepted to be good
quantification. Conversely, a ROQ of three indicates a window size of three orders of magnitude, which is
typically not useful in the context of physiological concentrations of biological molecules.

As a visual aid, we can plot the predicted ROQ as a heatmap for each intended analyte. Using this
method, we simulated ROQ heatmaps for kyn in our example system (Fig. 3a), where CV and bg were
estimated from the normalized binding curve and analyte-free control experimental data (CV = 0.053,
bg = 8.7 · 10−5). Next, we compared how well our predicted quantitative performance matches real world
measurements. As we observed experimentally, samples with lower concentrations of xa in the experiments
presented in Figure 2d-f had a low ROQ for kyn, indicating superior quantitative precision, while samples
with higher concentrations of xa (as in Fig. 2g-h) were predicted to have high ROQ (Fig. 3a, red crosses).
To more extensively validate this heatmap, we also experimentally tested a broader range of samples with
conditions including extremely low [xa] and [kyn], high [xa] and low [kyn], or higher [kyn] than was previously
tested (Fig. 3a, red circles). The overlapping signal curves from our two affinity reagents for each of these
additional experiments are shown in Figure 3b–g, and the respective lower and upper bounds of quantification
are shown in Figure 3h and i for our model and the näıve model, respectively.

For samples with very low concentrations of kyn (Fig. 3b-c), our model predicts a large ROQ above 3,
which is accurately reflected experimentally by the very large confidence intervals (Fig. 3h). This reflects
the fact that background noise overwhelms the signal at such low concentrations. For samples with low
concentrations of xa, and higher concentrations of kyn (Fig. 3d), our model predicts a ROQ < 0.5 for
kyn. Our experimentally-derived confidence interval again confirms this, with good quantitative precision
(Fig. 3h). Likewise, with high [kyn] and slightly higher [xa] (Fig. 3e), our experiment confirmed the model’s
prediction that we would be able to quantify kyn with ROQ < 0.5, yielding a very narrow confidence interval
that is slightly off from the true concentration. We note however, that the %CV (100% · SDi

s̄i
) in the replicate

SK1 signals for the mixture shown in Figure 3e is more than one order of magnitude lower than the average
%CV for all mixed samples (2.8% vs 0.1%). This discrepancy suggests the possibility of measurement error
leading to failure to accurately capture the true concentration. At higher concentrations of xa (Fig. 3f), our
model predicted an ROQ between 0.5 and 1.0, which is reflected in the slightly wider experimentally derived
ROQ. Accordingly, as shown in the sample condition in Figure 3g, further increasing [xa] was expected to
significantly reduce the sensitivity of the signal output of SK1 to kyn and thus has a predicted poor ROQ
> 3 — a result we confirmed experimentally and described in the previous section. Importantly, all of
the experimentally calculated concentration ranges still encompass the true concentration even when the
expected ROQ is broad, with the exception of the condition in Figure 3e (which, as explained above, is likely
attributable to experimental error). In contrast, the näıve model generally produces deceptively narrow
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Figure 3: Using range of quantitation (ROQ) to predict assay confidence intervals. a) Discretized ROQ
heatmap for kyn in an assay with SK1 and XA1, with an estimated CV of 0.2 and background of 0.01. Labels
for each red cross or circle indicate figure panel number for their respective L-curves. Samples 3b and 3c are
off the grid at 0.01 mM kyn, and have a ROQ of >3. b–g) Overlapping confidence interval curves from SK1
(red) and XA1 (orange) for various mixtures of kyn and xa, with actual analyte concentrations indicated
by a red circle. h-i) High-confidence concentration ranges predicted for kyn using h, our method or i, the
näıve assumption of specificity. Actual concentrations are marked with red circles. Arrows indicate which
condition produces a given bar range when xa concentrations are the same and would otherwise produce
overlapping bars. Exact values presented in SI Table 5. j–l) Revised ROQ heatmaps simulating conditions
in which j, the background or k, the CV are reduced by 50%, or l in which the number of replicates used
increases from three to five.

ROQs, but these only encompassed the true concentration in four out of eleven samples (Fig. 2i, 3i), all of
which are for cases where cross-reactivity has a much lower effect (low [xa] and medium-high [kyn]).

These results show that our ROQ heatmaps accurately predict the experimental results in terms of
quantitative precision, and should thus offer a robust tool for informing design decisions for assays. For
example, our model can help in determining the maximum allowable noise that an assay can have to deliver
reasonable precision at the analyte concentration range of interest. The ROQ heatmap in Figure 3a shows
that a sample with 2.8 mM kyn and 100µM xa (the condition shown in Fig. 3f) falls at the edge of zones
describing ROQ of 1 and 1.5 orders of magnitude. If the goal is to bring the ROQ below < 0.5 for this analyte
concentration, we can use our model to estimate how much the CV or background needs to be decreased to
achieve this. As an exercise, we have simulated how the ROQ heatmap shifts when the background variance
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is lowered by a factor of four (Fig. 3j), when the coefficient of variance CV (Fig. 3k) is lowered by a factor
of two, or even when the number of replicates used are increased from three to five (Fig. 3l). These results
show that reducing the background standard deviation by 50% minimally changes the predicted ROQ for
the sample with 2.8 mM kyn and 100µM xa, whereas lowering the CV by 50% shifts the ROQ to the desired
range of 0.5. This suggests that assay design in this case should prioritize the identification of opportunities
to reduce the CV — for example, by implementing more stringent washing or referencing steps, depending
on the assay [4]. Conversely, by keeping the assay the same, but running more sample replicates, drastically
improves the ROQ for the same sample.

Conclusion

In this work, we present a mathematical framework to enable the use of cross-reactive reagents for molecular
quantification. We achieve this by using multiple affinity reagents with distinct analyte-affinity profiles
alongside a generalized equilibrium-based model. For robustness, we also incorporated noise profiles into
the framework to output a range of analyte concentrations that consistently encompass the true analyte
concentration regardless of the concentration of interferent analytes.

We validated our theory with a proof-of-concept experiment focusing on quantifying kyn, a molecule for
which no specific affinity reagents are available. Our framework provided tight quantification ranges that
consistently contained the true kyn concentration under a range of conditions with varying concentrations
of the cross-reactive analyte xa. Notably, even when the concentration of xa is so high that sensitivity drops
significantly, the calculated range still encompassed the true concentration. Though a very large range was
calculated in these saturating cases, consistently incorporating the true concentration is drastically more
important in molecular measurement than incorrectly predicting a tight range that does not cover the true
concentration. This furthermore highlights the importance of providing a range of concentrations rather than
a single value for quantification. In contrast, a conventional Langmuir-based model that does not account for
cross-reactivity consistently overestimated the kyn concentration, even as it generated a deceptively narrow
range of quantification using our noise estimates. We have also demonstrated how to derive the ROQ metric
for a given assay based on a limited set of experimental data, which enables the design of molecular detection
assays that are better optimized for analyte quantification within an expected concentration range. Finally,
to scale the framework up beyond the examples shown in this work, our solutions are provided as generalized
solutions for an arbitrary number of analytes and reagents, and we have provided potential methods for
handling different cross-reactivity scenarios in an experimentally tractable manner (SI Section 2.1).

Our framework helps turn the liability of cross-reactivity into an asset for achieving accurate quantifi-
cation of analytes even with sub-optimal affinity reagents. This robust schema yields well-defined bounds
of quantification that make it easier to assess the quality of assay results and determine conditions under
which assay performance is likely to break down (even in cases of guaranteed specificity). To aid in scaling
up to more reagents and analytes, our framework could be revised to resolve analyte concentrations in more
complex, non-Langmuir binding models—for example, affinity reagents with multiple binding sites or sce-
narios in which the affinity reagent or analyte concentration is no longer guaranteed to be in excess of the
other. To achieve this, the assays could be first run to generate the necessary data to understand the relevant
binding interactions. If the binding interactions break assumptions stated in the methods, the generalized
binding equation can be updated to resolve such physical changes. Furthermore, if non-linearities are in-
troduced to the binding equations, our specific method of solving the equations with linear programming
could be changed out to use other optimization solutions such as Bayesian estimators and more common
optimization techniques like maximum likelihood estimation. Furthermore, integrating this framework with
affinity reagent selection processes could potentially provide affinity reagent sets with varying degrees of
cross-reactivity that improve the quantification of analytes in their expected concentration ranges, thereby
minimizing the burden on affinity reagent selections.

In conclusion, this work provides a proof-of-concept framework for re-purposing the many existing cross-
reactive affinity reagents to develop molecular detection assays that can achieve greater quantitative accuracy
in complex samples, and thus could inform a reassessment of what constitutes a ‘successful’ affinity reagent
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selection process.

1 Methods

1.1 Generalized Model Derivation and Assumptions for Cross-Reactive Affinity
Reagents

Our mathematical framework is applicable for any number of reagents (m) and analytes (n), although we
highly suggest keeping m ≥ n to avoid an under-determined system of equations and minimize the ROQ.
Here, we provide a generalized model and its derivation for the signal output si from a cross-reactive affinity
reagent Ai (i ranges from 1 to m), which can bind to n analytes Tj (j ranges from 1 to n). Each of these n

interactions has a respective association constant of Ki,j
A :

Ai +Tj

Ki,j
A−−⇀↽−− Ai ·Tj where Ki,j

A =
[AiTj ]

[Ai][Tj ]
(9)

At equilibrium, the fraction of analyte Tj bound to Ai is a function of all interactions of Ai with all
n analytes. To simplify all the possible binding dynamics, we assume the following: Ai can only bind to
a single analyte at a time, analyte concentrations [Tj ] are significantly greater than the sum of all affinity

reagent concentrations [Ai], and there is only a single Ki,j
A for each Ai binding to Tj [9, 10]. As such, the

fraction of Ai bound to Tj is derived as follows:

fi,j =
[AiTj ]

Atot
=

[AiTj ]

[Ai] +
∑n

x=1[AiTx]

=
Ki,j

A [Ai][Tj ]

[Ai] +
∑n

x=1 K
i,x
A [Ai][Tx]

=
Ki,j

A [Tj ]

1 +
∑n

x=1 K
i,x
A [Tx]

(10)

A normalized signal output from Ai will be a sum of fractions of Ai bound to Tj :

si =
n∑

j=1

[AiTj ]

Atot
=

n∑
j=1

fi,j (11)

Combining equations 10 and 11 yields the following:

si =
n∑

j=1

Ki,j
A [Tj ]

1 +
∑n

x=1 K
i,x
A [Tx]

=

∑n
j=1 K

i,j
A [Tj ]

1 +
∑n

j=1 K
i,j
A [Tj ]

(12)

which describes the total signal output for Ai in a solution of n analytes. Note that when we assume
there is only one analyte (n = 1), Equation 12 reduces to the Langmuir isotherm [11]. As we already assume
that [Tj ] >> [Ai] , we also assume that the interactions of m other affinity reagents negligibly reduce the
free Tj in solution, and thus any other affinity reagent Ai will follow the same equation as Equation 12.

1.2 Solving for the Upper and Lower Bounds of Concentrations

To calculate lower and upper bounds on all analyte concentrations, we assume that we have access to reliable
upper and lower bounds for every signal readout si. Our approach is a formalization of the visually intuitive
approach of Fig. 1, where each affinity reagent’s signal si defines a set of analyte concentration combinations
that could feasibly generate that signal. Overlapping these feasible sets thus defines the solution set of
analyte concentrations that can explain all measurements. To determine this solution set mathematically,
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we begin by formally describing it using linear constraints (inequalities of the format
∑n

j=1 αj [Tj ] ≤ β with
some values αj and β). We then determine the solution set’s extremes (i.e., lower and upper bounds for each
analyte concentration) using off-the-shelf convex optimization solvers. These solvers have the advantage that
they guarantee convergence to the same optimal solution.

Convex optimization solvers work on convex sets (i.e., contiguous shapes without any dents). The solution
set forms such a convex set when plotted on a linear scale rather than a logarithmic one. To formally construct
the solution set, we reshape all of our constraints into a linear format to yield linear constraints on the analyte
concentrations and then sequentially apply them. These linear constraints can be thought of as cutting the
space along a plane, and removing everything that is on the wrong side of the plane.

We begin constructing our convex set using the solubility limits 0 ≤ [Tj ] ≤ Tmax,j . The lower limits
of 0 ≤ [Tj ] cut the space along the zero-plane of every dimension, leaving only the positive concentra-
tions. Adding the upper solubility limits [Tj ] ≤ Tmax,j turns the space of feasible concentrations into a
(hyper)rectangle.

Next, we convert the upper and lower bounds on the readout si into linear constraints on [Tj ]. For
notational brevity, we rewrite Eq. 7 as

s̄i −∆si ≤ f

 n∑
j=1

Ki,j
A [Tj ]

 ≤ s̄i +∆si

f(x) : =
x

1 + x
with x ≥ 0

Because f is monotonically increasing for positive x, there exists an inverse function f−1, which we can
utilize to gain linear constraints on the analyte concentrations:

f−1(s̄i −∆si) ≤
n∑

j=1

Ki,j
A [Tj ] ≤ f−1(s̄i +∆si)

f−1(s) =
s

1− s

As an aside, if f is monotonically decreasing (e.g., for a signal-off binder), the inequalities change to be:

f−1(s̄i +∆si) ≤
n∑

j=1

Ki,j
A [Tj ] ≤ f−1(s̄i −∆si)

We can now cut our feasible space based on these linear constraints. Whereas the solubility limits were
parallel with the axes, these linear constraints are more diagonal. In summary, our convex shape is described
by the following constraints:

0 ≤ [Tj ] ≤ Tmax,j for j = 1..n

f−1(s̄i −∆si) ≤
n∑

j=1

Ki,j
A [Tj ] ≤ f−1(s̄i +∆si) for i = 1..m

Having described the convex shape, we can query its properties using a convex optimization solver, such
as CVXPY [13, 14]. The properties we care about for the purposes of this paper are the minimum and
maximum values of each analyte concentration within the solution set. To find these values for a given
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analyte Tk, we solve the following convex problems3:

Minimize/Maximize:
[Tj ]

[Tk]

Subject to: 0 ≤ [Tj ] ≤ Tmax,j for j = 1..n

f−1(s̄i −∆si) ≤
n∑

j=1

Ki,j
A [Tj ] ≤ f−1(s̄i +∆si) for i = 1..m

Note: To solve for ranges of quantification using the conventional näıve Langmuir model (as used for
comparison in the experimental results) we pretended every analyte had a mono-specific affinity reagent. We
set the KA values of SK1 for xa and of XA1 for kyn to zero, and then used the same methods.

1.3 Reagents

DNA aptamers and displacement strands were chemically synthesized by Integrated DNA Technologies
(IDT) with high-performance liquid chromatography (HPLC) purification (see SI Table 1 for sequences).
L-kynurenine (K8625) and xanthurenic acid (D120804) were ordered from Sigma-Aldrich.

1.4 Assay Characterization via Plate Reader

Aptamers and displacement strands were developed and characterized in previously published work [7].
These affinity reagents were selected to undergo a conformational change upon binding to an analyte. Thus,
when functionalized with fluorophore-quencher pairs, such binding events produce a fluorescence increase
that can be read in a conventional plate-reader-based assay. We followed the same plate-reader-based assay
with minor modifications. For initial stock solutions, analytes were dissolved in selection buffer (20 mM
TrisHCl, pH 7.0, 30 mM NaCl, 5 mM KCl, 1 mM MgCl2, and 0.01% tween-20) at a concentration of 5 mM
for kyn or 2 mM for xa. These were then serially diluted down to 0.123 µM kyn or 0.013 µM xa for binding
curve concentrations. Master mixes of aptamer and displacement strand were created as a 10x solution of
500 nM aptamer and 2 or 1.25 µM displacement strand for XA1 and SK1, respectively. These mixtures
were then pre-annealed in 100 µl aliquots by holding at 95ºC for five minutes and dropping by 1ºC every 30
seconds until reaching 4ºC in a Mastercycler X50 (Eppendorf).

To create the sample mixtures, 6 µl of 10x annealed master mix was combined with 54 ul of 1.1x concen-
trated target in 96 well, semi-skirted, LoBind twin.tec PCR plates (Eppendorf) for a total volume of 60 µL
at 1x master mix and 1x target concentration. No-analyte controls were set up by adding 1x selection buffer
instead of analytes. After sealing the plate, the samples were briefly vortexed and incubated on a rotator for
30 minutes in the dark at room temperature. The plate was then spun down at 1,000 rcf for 5 seconds. 50 µl
of each sample were transferred to Corning 96-well half-area black-bottom polystyrene microplates (Thermo
Fisher Scientific) for measurements at 25ºC on a Synergy H1 microplate reader (BioTek), with a filter cube
(emission: 590/35, excitation: 538/63, gain: 55).

1.5 3-Parameter-Logistic (3-PL) Curve Fitting

All of our methods require specific values of Ki,j
A , and require our signals si to be normalized to the range

[0; 1]. We assume our unnormalized signals ui follow the following 3-PL equation (Which is the same as
4-PL, but with a Hill coefficient of 1 since we assume one-to-one binding):

ui = di +
ai − di

1 +
∑n

j=1 K
i,j
A [Tj ]

3Notation explanation: We use the notation by Boyd and Vandenberghe [15]. The indices are defined as follows: k is the
fixed index of the target analyte whose bounds we are querying, j is a variable index over the analytes, i is a variable index
over the readouts.
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where di is the readout value from our assay when the affinity reagents are saturated, and ai is the readout
when analyte concentrations are zero. Given these parameters, we normalize our reads as follows:

si =
ui − ai
di − ai

To determine ai, di, andKi,j
A , we measure the signal of each affinity reagent against varying concentrations

of each analyte in isolation, i.e., the concentrations for all but one target analyte are zero. The equation
that models this system simplifies to be:

ui = di +
ai − di

1 +Ki,j
A [Tj ]

We then apply a least-squares fit to these parameters using the curve fit function of scipy [16]. Specifically,
we solve the following optimization problem:

Minimize
ai,di,K

i,j
A

N∑
i=1

n∑
j=1

K∑
k=1

ui,j,k −

di +
ai − di

1 + exp
(

˜
Ki,j

A

)
[Tj,k]

2

where i is the index for the affinity reagents, j is the index for the target analytes, and k is the index

for the samples and replicates. We substitute Ki,j
A = exp

(
˜

Ki,j
A

)
to make the optimization problem more

stable. To ensure convergence, we also defined lower and upper bounds on all fitted parameters. The values
of these bounds were chosen to be very lenient by being unrealistically small/large values (e.g., beyond
detection limits of the detectors, and beyond solubility limits). Specifically, we set 0 ≤ ui, di ≤ 106, and

ln(10−6) ≤ ˜
Ki,j

A ≤ ln(1018) (equating to limits of 1 aM and 1MM on Ki,j
D ).

When running these experiments for xa and kyn, we noticed that the highest concentrations from both
analytes’ binding curves were producing uncharacteristically low readout values. This may have been due to
potential quenching of fluorescence by the analytes at high concentrations [7]. For this reason, we ignored
these highest concentrations to get more reliable fits. Full data are provided in the supplemental data file.

1.6 Calculation of assay error profile and background signal

To estimate the standard deviations we would expect from a given measurement, we assume that there are
two sources of variance in our measurements. First, a constant background variance bg, second, a variance
that scales with signal output according to a coefficient of variance CV = σ

s̄k
. We then assume that these

sources of variance are independent, such that the variance of a signal sk is simply the sum of both sources
of variance:

V ark = (CV · s̄k)2 + bg

To estimate these two parameters bg and CV , we first normalized the signals from the binding curve/analyte-
free controls as described above in the 3-PL curve fitting methods section. For each sample, we then calculated
the average s̄k and variance V ark based on triplicate measurements. Finally, we determined bg and CV by
solving the following optimization problem:

Minimize
bg,CV

K∑
k=1

(
V ark −

(
(CV · s̄k)2 + bg

))2

where k is the index for the samples. For a given signal si, we can now estimate the sample standard
deviation

SDi =
√
V ari =

√
(CV · s̄k)2 + bg
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and the ∆si from Equation 7:

∆si = t
SDi√
R

where R is the number of measurement replicates we are simulating, and t is the 97.5th percentile of the
t-distribution with (R− 1) degrees of freedom.

1.7 Statistics and Reproducibility

All samples were measured in triplicate. All attempts are presented in the figure plots except for the
highest concentration samples in the binding curve due to potential quenching of fluorescence by the analytes
(discussed in Methods 1.5). These data are kept in the source dataset. No statistical method was used to
predetermine sample size. The investigators were not blinded to allocation during experiments and outcome
assessment.

1.8 Data Availability

The source data generated in this study are provided with this paper.

1.9 Code Availability

Code is available here: https://github.com/sohlab/cr_quant
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2 Supplemental Information

2.1 Strategies for addressing different categories of cross-reactive analytes

Effectively handling the large number of analytes that might bind to an affinity reagent requires us to first
identify which ones have a substantial impact on the signal output. Such impacts depend on the variability of
the cross-reactive analyte concentration and the ratio of the effective signal contribution of the cross-reactive

analyte to intended analyte (
Kj

A[Tj ]

Kspecific
A [Tspecific]

). To tackle this, we suggest categorizing cross-reactive analytes

into three groups: “high”, “low”, and “constant” cross-reactivity. Subsequently, we apply our model to each
group with decreasing levels of detail.

The most important cross-reactive analytes are those in the “high” cross-reactivity category, which are
expected to vary a lot in a sample and for which the ratio of cross-reactivity to specific signal is high (⪆ 1).
These “high” analytes can typically be identified from the literature for the affinity reagent Ai and by
understanding analyte-relevant molecular pathways, and should be individually modeled. It is up to the
researcher’s discretion how much error they can tolerate. The impact of xa on kyn quantification is an
example of such a high cross-reactivity analyte, since xa is expected to vary a lot in physiological conditions
and the ratio of cross-reactivity in these conditions with the available affinity reagents for xa and kyn is high.

Low cross-reactivity analytes are those for which the ratio of cross-reactivity to specific signal is low, but
[Tj ] can still vary. It might not be worth extracting out KA values for each analyte in this category. However,

we suggest approximating these into a total combined association constant Ki,lowCR
A . We can approximate

this by making dilutions of the sample matrix (without Tspecific) and measuring the change in signal output
from each affinity reagent.

Finally, constant cross-reactive analytes are those which are known to cross-react, but their concentration
is expected to stay relatively constant. These analytes contribute to the background signal, causing a constant
shift upwards in the binding curve. Depending on how much the cross-reactivity to specific signal ratio
changes, there could be a constant reduction in the dynamic range of the signal. This does not introduce
bias into quantification, and thus is beyond the scope of our current study. For more information about
reducing non-specific binding, interested readers can explore other techniques mentioned in the introduction.
For constant cross-reactivity analytes, one should always be careful to verify the assumption of the signal
contribution being constant. Wrongfully dismissing off-target binding as “constant” cross-reactivity will have
the same effect as not accounting for cross-reactivity at all, as in the naive methods discussed in this paper.

2.2 An analytical solution to the cross-reactivity model leads to unstable solu-
tions

In the case of no noise, we can solve for the analyte concentrations analytically:

si =

∑n
j=1 K

i,j
A [Tj ]

1 +
∑n

j=1 K
i,j
A [Tj ]

(13)

si
1− si

=
n∑

j=1

Ki,j
A [Tj ] (14)

[T ] = K+
A

(
s

1− s

)
(15)

where [T ] is a vector of analyte concentrations, K+
A = (K⊤

AKA)
−1K⊤

A is the pseudo-inverse of the matrix
of association constants KA, and s is a vector of the signal readouts from all affinity reagents. We see
that this system can only be solved if there is no saturated affinity reagent readout with si = 1, and if the
matrix (K⊤

AKA) is invertible, i.e., we have enough affinity reagents whose association constants are linearly
independent from one another.
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While this set of equations is easily solvable, it runs into the problem of being sensitive to noise without
giving the user any feedback for when they may trust the readouts. To illustrate this problem, we will
analyze the case of two analytes and two affinity reagents. The closed-form solution of the above equations
are:

[T1] =
1

K1,1
A K2,2

A −K1,2
A K2,1

A

(
+

s1
1− s1

K2,2
A − s2

1− s2
K1,2

A

)
[T2] =

1

K1,1
A K2,2

A −K1,2
A K2,1

A

(
− s1
1− s1

K2,1
A +

s2
1− s2

K1,1
A

) (16)

Looking at the example case where

KA =

[
1 1
1 10

]
with [T1] = 1, [T2] = 0, we get the signal readouts s1 = s2 = 0.5. Using the above equations, we can now
observe the effect of small errors in s2. For s2 = 0.5 + 10−6, we get [T2] = 4 · 10−8. For s2 = 0.5 + 10−3,
we get [T2] = 5 · 10−5, a change of three orders in magnitude. This shows that even small errors in s2 can
change this method’s estimate of [T2] by orders of magnitude, without alerting the user to this sensitivity to
noise.

In contrast, using our method gives an intuitive understanding of what is happening in this scenario:
This example’s analyte concentrations are in a regime of high accuracy for [T1] and low accuracy for [T2],
which is due to the values K1,1

A and K1,2
A being too close, as is reflected in the corresponding ROQ heatmap.

Our method reports this by only yielding an upper bound for [T2], instead of attempting to make an accurate
estimate. For this reason, we argue that the presentation of concentrations as feasible ranges on a logarithmic
scale rather than single-number estimates can prevent misunderstandings when considering assay results.
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Supplementary Figures

Figure 4: Demonstration of inherent limitations of affinity reagent SK1. For the experimental conditions and
resultant signals of 1mM kyn and increasing xa from 3µM to 316µM a-e) as discussed in the main section.
Even when overlapping measurements from SK1 (red L-shapes) with perfect information about the true xa
concentration (yellow horizontal line), the overlapped region may not be bounded for kyn. This occurs when
xa concentrations approach the K1,2

D of SK1 (in this case 0.13 mM) which is about the conditions shown d-e.
At these points, the xa line overlaps with the lower end of SK1 signal output. Another way of viewing this is
that as the xa concentration increases, more SK1 affinity reagents are occupied by xa, leaving fewer affinity
reagents to interact with kyn. This causes the ROQ for kyn to increase in size for high concentrations of xa.
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Supplementary Tables

Table 1: DNA aptamer and displacement strands sequence

Name Sequence (5’ → 3’)

XA-1 Aptamer Cy3-GGCTCTCGGGACGACCGGAGGTCTCTTTACTTT
-TAACCAGGTGAGGTCGTCCCTG

SK-1 Aptamer Cy3-GGCTCTCGGGACGACGGTATTGCATCTTGGAAT
-ACAGCTTTGCTAGTCGTCCCTG

Displacement Strand 14 v2 TCGTCCCGAGAGCC-DABCYL

Table 2: Kd fits for this work’s binding curve data versus the original work by Yoshikawa et al. [7] when
fit with a 3-parameter logistic curve. The values for XA1: Kyn from the original work by Yoshikawa et al.
of Kd = 106M and σ

(
log10

(
Kd

1M

))
= ∞ are due to the fitting algorithm hitting the upper bound for Ki,j

A ,
which we defined in section 1.5 to ensure convergence.

Affinity Reagent: Analyte
This work Yoshikawa et al

Kd (mM) log10
(
Kd

1M

)
σ
(
log10

(
Kd

1M

))
Kd (mM) log10

(
Kd

1M

)
σ
(
log10

(
Kd

1M

))
SK1: Kyn 1.98 -2.704 0.025 1.58 -2.800 0.015
SK1: XA 0.13 -3.882 0.030 0.11 -3.971 0.016
XA1: Kyn 264 -0.578 0.259 1e9 6.000 ∞
XA1: XA 0.64 -3.192 0.029 0.32 -3.500 0.039

Table 3: Lower bound values ai and upper bound values di from this work’s binding curve data versus the
original work by Yoshikawa et al. [7] when fit with a 3-parameter logistic curve. Note that we assumed the
change in fluorescence to be identical no matter which analyte binds to an affinity reagent. This means we
only have a single value for ai and di per affinity reagent, instead of one for each pairing of affinity reagent
and analyte.

Affinity Reagent
This work Yoshikawa et al

ai (RFU) σ
(

ai

RFU

)
di (RFU) σ

(
di

RFU

)
ai (RFU) σ

(
ai

RFU

)
di (RFU) σ

(
di

RFU

)
SK1 1637.5 50.6 10166.3 192.1 2924.2 17.3 8746.9 61.1
XA1 570.4 11.9 7241.8 245.3 9495.5 42.5 21274.9 427.6
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Table 4: Upper and lower bounds (UB, LB) of kyn quantification in mM for the naive Langmuir model.
Error calculated by log(LB or UB) - log([kyn]). ’inRange’ indicates if estimated bounds hold the true kyn
concentration. Sample names refer to figure panels in which curves from the relevant mixtures are presented.

Sample [kyn] mM [xa] mM LB UB LB Error UB Error inRange?

2d 1.000 0.003 0.96 1.25 -0.02 0.10 True
2e 1.000 0.010 1.03 1.46 0.01 0.16 False
2f 1.000 0.032 1.45 1.80 0.16 0.26 False
2g 1.000 0.100 2.09 3.46 0.32 0.54 False
2h 1.000 0.316 3.42 4.92 0.53 0.69 False
3b 0.010 0.003 0.02 0.13 0.35 1.12 False
3c 0.010 0.316 4.60 6.67 2.66 2.82 False
3d 2.754 0.003 1.85 2.81 -0.17 0.01 True
3e 2.754 0.010 2.31 2.34 -0.08 -0.07 False
3f 2.754 0.100 2.05 3.66 -0.13 0.12 True
3g 2.754 0.316 1.88 5.48 -0.17 0.30 True

Table 5: Upper and lower bounds (UB, LB) of kyn quantification in mM for our cross-reactivity model.
Error calculated by log(LB or UB) - log([kyn]). N/A provided if bound is 0. ’inRange’ indicates if estimated
bounds hold the true kyn concentration. Sample names refer to figure panels in which curves from the
relevant mixtures are presented.

Sample [kyn] mM [xa] mM LB UB LB Error UB Error inRange?

2d 1.000 0.003 0.87 1.25 -0.06 0.10 True
2e 1.000 0.010 0.79 1.37 -0.10 0.14 True
2f 1.000 0.032 0.89 1.50 -0.05 0.18 True
2g 1.000 0.100 0.74 2.74 -0.13 0.44 True
2h 1.000 0.316 0.00 1.27 N/A 0.10 True
3b 0.010 0.003 0.00 0.13 N/A 1.12 True
3c 0.010 0.316 0.00 2.34 N/A 2.37 True
3d 2.754 0.003 1.73 2.81 -0.20 0.01 True
3e 2.754 0.010 2.16 2.24 -0.10 -0.09 False
3f 2.754 0.100 0.97 2.79 -0.45 0.00 True
3g 2.754 0.316 0.00 3.18 N/A 0.06 True
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