
Nano Today 56 (2024) 102247

Available online 1 April 2024
1748-0132/© 2024 Published by Elsevier Ltd.

Ultra-confined controllable cyclic peptides as supramolecular biomaterials 

Mey-Sam Chorsi a,b,c,d,e,*, Will Linthicum f, Alexandra Pozhidaeva g, Caitlyn Mundrane b, Vikram 
Khipple Mulligan h, Yihang Chen i, Pouya Tavousi a, Vitaliy Gorbatyuk j, Olga Vinogradova k, 
Jeffrey C. Hoch g, Bryan D. Huey f, Thanh D. Nguyen a,b,l,m, H. Tom Soh c,d,e, 
Kazem Kazerounian a,b, Horea Ilies a,b,** 

a School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 06030-3305, Storrs, CT 06269, USA 
b Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA 
c Department of Bioengineering, Stanford University, Stanford, CA 94305, USA 
d Department of Radiology, Stanford University, Stanford, CA 94305, USA 
e Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA 
f Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA 
g Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA 
h Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA 
i Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA 
j Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA 
k Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA 
l Polymer Program, University of Connecticut, Storrs, CT 06269, USA 
m Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA   

A R T I C L E  I N F O   

Keywords: 
Peptides 
Cyclic amino acids 
Supramolecular biomaterials 
Self-assembly 

A B S T R A C T   

The capacity to design molecules capable of orchestrated movements in response to specific stimuli could yield 
functional biomaterials suitable for diverse innovative materials and devices. However, the rational design of 
molecules capable of precisely orchestrated movements remains exceedingly difficult. As a stepping-stone toward 
this goal, we have developed a method for manufacturing precisely designed cyclic peptide molecules with a 
single degree of freedom. We demonstrate that the structural configuration of these molecules can be precisely 
determined under different external stimuli and explore the mechanism by which these molecules form supra-
molecular self-assemblies. Our experimental analysis of these assemblies reveals that our constrained cyclic 
peptides form nanotube structures through sheet-like hydrogen bonding. Unexpectedly, these higher-order 
structures can achieve remarkably rigid (~10 GPa) and stable architectures at high temper-
atures—comparable to the most rigid proteinaceous materials in nature. The design strategy described here could 
facilitate the development of molecular machines, smart materials, and other applications that require fine-tuned 
regulation of biomolecular behavior.   

Introduction 

Controllable biomolecules move in a well-defined way in response to 
external stimuli. Through careful design and engineering, the properties, 
functions, and interactions of these molecules can be modulated, 
allowing for targeted applications in fields such as drug delivery [1–5], 
biomaterials [6,7], biosensing [8], and bioimaging [9]. These bio-
molecules can be triggered by various stimuli such as light [10–19], 

temperature [20–22], chemical reactions [23–27], electrical potential 
[28–31], or mechanical stress [32–36]. They may be assembled from a 
diverse range of biomolecular components, including nucleic acids 
[37–42], carbohydrates [43–46], lipids [47–50], proteins [51–57], and 
peptides [58–64]. Peptides are particularly well-suited for this purpose 
due to their structural diversity, specificity, functional versatility, 
biocompatibility, and synthetic accessibility [65–67]. 

Controllable biomolecules could offer numerous opportunities for 
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precise functionalization of supramolecular biomaterials. Supramolec-
ular materials are composed of molecular building blocks that can self- 
assemble through non-covalent interactions to form hierarchical struc-
tures [68,69]. By incorporating controllable biomolecules, it becomes 
possible to precisely manipulate the properties and behavior of supra-
molecular biomaterials at the molecular level. This control allows for the 
design and creation of biomaterials with enhanced functionality, 
improved stability, and tailored interactions with their surrounding 
environment [70–76]. Controllability can enable precise regulation of 
the assembly and disassembly processes within supramolecular bio-
materials [77–81]. This control over molecular organization empowers 
the development of biomaterials with specific structural arrangements, 
such as hierarchical architectures or dynamic systems [82–84]. These 
structures can exhibit unique mechanical [85,86], chemical [87,88], or 
optical properties [89–91], leading to applications in tissue engineering 
[92,93], drug delivery [94–96], regenerative medicine [97,98], and 
biosensing. 

Peptide-based supramolecular biomaterials also offer other distinc-
tive advantages [99–105]. They can have structural features at different 
length scales, ranging from nanoscale to macroscale, and their proper-
ties can be tuned by modifying the amino acid sequence, length, or other 
design parameters [106–115]. One notable example of such materials is 
peptide-based glass, which exhibits promising biocompatibility and 
biodegradability profiles, making it an attractive candidate for use in 
various biomedical contexts [116]. 

However, it should be noted that controlling the precise arrangement 
and movement of biomolecules remains challenging, and this 
complexity can be further amplified by the demands of physiological 
conditions and the potential need for intricate chemical synthesis pro-
cesses. For example, the rapid degradation of peptides in biological 
environments limits the long-term durability of peptide biomaterials. To 
counter this issue, cyclic peptides can be employed that mitigate 
degradation by eliminating the C and N termini of peptides [117,118]. 
Cyclic peptides also offer other advantages over linear peptides, 
including improved binding affinity, increased membrane permeability, 
and diverse target engagement [119–122]. These characteristics make 
cyclic peptides promising candidates for supramolecular biomaterials 
design [123–126]. Unfortunately, there is currently no general strategy 
to effectively combine existing cyclic peptides and construct larger 
functional biomaterials from smaller constituent parts. Furthermore, the 
de novo design of cyclic peptides—offering atomic-scale control over 
both structure and molecular motion—remains challenging. 

Over the past 20 years, our group has developed a novel approach for 
designing biomolecules with controllable motion and function based on 
kinematic principles [127–133]. Our working hypothesis has been that 
the creation of controllable molecules will first require the de novo 
design of molecules with well-defined structures and well-confined 
motions, and that this can be achieved by rationally designing mole-
cules with only a single effective degree of freedom (DOF) of motion. 
Here, we expand on our prior work by designing and synthesizing the 
simplest cyclic peptides that can be precisely controlled. Although these 
molecules possess many rotatable bonds, they are engineered to have a 
single effective DOF; for this reason, we refer to them as 1-DOF linkages. 
Our hierarchical design process allows for the development of diverse 
classes of biomolecules with different numbers of amino acids and 
amino acid types. We explore experimental and theoretical means of 
altering the structure of these cyclic peptides by introducing external 
stimuli such as heat and external electric fields to control their motion. 
Furthermore, we demonstrate experimentally that these controllable 
biomolecules self-assemble into higher-order structures and present a 
model for self-assembly based on these results. These supramolecular 
assemblies exhibit remarkably rigid and stable architectures at high 
temperatures. We propose that such structural architectures could be 
used to produce larger multifunctional materials based on the collective 
motion of molecular subunits, which could in turn be applied towards 
the development of new biocompatible and biodegradable materials. 

Results 

Design, synthesis, and structural characterization of single controllable 
cyclic peptides 

By pursuing a structure limited to 1-DOF, we greatly confine the 
mobility of the molecules so that their behavior can be described with 
just a single parameter, which ensures that the system behaves in a 
reproducible and predictable way. Based on these design principles, 
almost every amino acid can be modeled as a 2-DOF linkage corre-
sponding to the ϕ and ψ dihedral angles, and these dihedral angles 
enable us to determine the overall structure of the linkage. Proline is an 
exception to this rule with only one freely-rotatable dihedral angle, ψ . As 
described below, we can generate 1-DOF mechanisms by creating 
combinations of amino acids with carefully chosen numbers of prolines. 

To begin, we chose a simple spatial 1-DOF design: a closed-loop 
seven-bar linkage (i.e., the closed-loop form of a 7-DOF linear peptide) 
[134]. The requirement that the rigid-body transform from the end of 
the loop to the start in this construct must be compatible with an amide 
bond fixes six DOFs, leaving only one “free” DOF. This linkage can be 
designed from a linear peptide chain with seven body vectors (links, L) 
and seven rotatable dihedral angles (joints, J), as shown in Figs. S1-S5. 
As proline is the only amino acid with L=1 and J=1, the presence of one 
proline in a four-residue cyclic peptide (class I), three prolines in a 
five-residue peptide (class II or III), five prolines in a six-residue peptide 
(class IV), or seven prolines in a seven-residue peptide (class V) all result 
in a seven-bar linkage. For non-proline residues, glycine is prefered due 
to the lack of side chain; however, we used cysteine in some cases where 
the chemical synthesis of the molecule was not possible. For each of 
these macrocycle constructs, there is a single unique sequence of proline 
and non-proline residues with the desired proline count—with the 
exception of the five-residue cyclic peptide, in which two patterns of 
three prolines and two non-prolines are possible (Fig. 1a; class II and 
class III). Loop closure creates a cyclic structure, biologically analagous 
to a cyclic peptide, and fixes six DOF, effectively reducing a 7-DOF linear 
peptide to a 1-DOF cyclic peptide (Fig. 1b). We have detailed our 
kinetostatic design strategy in Supplementary Note S1. 

We synthesized the designed cyclic biomolecules using standard 
head-to-tail cyclic Fmoc solid-phase peptide synthesis (see Methods, 
Figs. S6-S11, and Supplementary Note S2). We experimentally deter-
mined the structures of the peptides using nuclear magnetic resonance 
spectroscopy (NMR; see Methods and Figs. S12-S14). Up to 20 NMR 
structure candidates with the lowest energies for class I, class II, and 
class III were then compared with their design model (Fig. 1b). NMR 
structures could not be obtaind for class IV and class V cyclic peptides 
due to the high degree of magnetic equivalence among nuclei, and so we 
have instead compared our design model with structures predicted by 
the Rosetta software (see Methods, Supplementary Note S3). Rosetta 
has been used previously to validate designed peptides, and several 
examples of accurate prediction of peptide structure by Rosetta have 
been published [135–139]. We calculated relatively low root mean 
square deviations (RMSD) from the designed model (within 1 Å) for the 
class I–III NMR structures, suggesting that our peptides are structured as 
designed. Rosetta predictions also correlated closely with the NMR 
structures in these cases based on RMSD values, suggesting that such 
predictions offer a good point of comparison in other cases in which 
NMR structures could not be obtained (energy landscapes are shown in 
Fig. S15). The class IV peptide showed close agreement between Rosetta 
prediction and design model, with a backbone RMSD of 1.26 Å. The 
class V peptide showed a somewhat more heterogeneous low-energy 
population in the Rosetta simulation, suggesting less rigid folding, 
although the backbone RMSD still remained fairly low at 1.62 Å. This 
suggests that the kinematic method used for design, which assumes ideal 
bond lengths and bond angles, perfectly planar peptide bonds, and 
optimal proline ϕ dihedrals, produces structures that remain reasonably 
well-folded even in Rosetta simulations in which all of these values are 
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Fig. 1. Design, synthesis, and structural characterization of single controllable cyclic peptides. a, Open chain structure of five classes of controllable cyclic 
peptide comprising proline and non-proline (glycine or cysteine) residues with exactly seven rotatable bonds in the backbone. Prolines are highlighted in red in the 
sequences, which were also synthesized for experimental characterization. b, Closed-chain structure of the peptides presented in a. We compared the configuration of 
the designed peptides (green) to NMR (magenta) and Rosetta predictions (orange). We report the backbone heavy atom RMSDs of the designed structure relative to 
the closest member of the NMR ensemble (for class I–III) or the lowest-energy Rosetta prediction (for all classes). RMSD values are low in all cases, although we 
predict some conformational heterogeneity is predicted for the 7-residue (class V) cyclic peptide. c, 2D structure of the peptides in b. The rotatable backbone dihedral 
angles of each amino acid are colored. d, Changes in rotatable dihedral angles as a function of change in one of the rotatable dihedrals chosen arbitrarily as a control 
variable (solid and dashed curves correspond to the first and second solution sets, respectively). Simulation with our kinematic model produced seven curves that 
reflected the predicted range of configuration changes across which the structural integrity of the ring was preserved and only the value of the seven dihedral angles 
was altered. Dots correspond to dihedral angle values obtained from the ensemble of NMR structures, and triangles represent Rosetta predictions. The correlations 
predicted by our model correspond well to the distribution seen with NMR (20 candidate structures), supporting the hypothesis of 1-DOF motion for the cyclic 
peptides. However, some differences can be seen between the designed models and Rosetta predictions, which sampled a broader range of high-energy 
configurations. 
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permitted to deviate from ideal values. The larger cyclic peptides are 
somewhat more flexible than their smaller counterparts, however; this is 
likely because of the cumulative effect of the larger number of these 
slightly flexible degrees of freedom that were assumed to be fixed. 

Our kinematic design method allows us to obtain all the dihedral 
angles (seven, as depicted in Fig. 1c) needed to create a controllable 
cyclic biomolecule given a candidate pattern of proline and non-proline 
amino acids. Additionally, it can predict the concerted motion of dihe-
dral angles needed to maintain closure of the peptide. Fig. 1d depicts 
two solution sets derived for each cyclic peptide with the overlaid 

dihedral angles from the NMR structure candidates. Here, we randomly 
selected one of the seven rotatable dihedral angles as the control angle, 
and plotted the variation of the other six rotatable dihedral angles 
against the control angle. This shows our design method can determine 
the entire range of motion of cyclic peptides continously. Since the 
accessible conformational space is essentially one-dimensional for these 
peptides (unlike the extremely high-dimensional conformational spaces 
of proteins), this enables us to scan for the global energy minima for 
these peptides and make predictions about how these minima change in 
response to external stimuli, as will be discussed in the following section. 

Fig. 2. Control mechanisms to manipulate the motions of cyclic peptide GPGPP. a, Full range of motion and singular positions for the GPGPP peptide. b, Energy 
profile for the complete motion of the GPGPP peptide. c, Molecular dynamics simulations of GPGPP at different temperatures. d, Temperature-dependent NMR for 
GPGPP at different temperatures. e, Energy curves for GPGPP in varying uniform electric fields (0.3, 0.5, and 0.7 V/Å) placed along the dipole moment of the 
molecule using a multipole power series expansion model. f, Varying energy curves for GPGPP (blue) in a non-uniform electric field with an externally charged 
particle (5×103 C) being shifted in the xy-plane at a fixed distance of 15 Å. Original energy curve is shown in black. Red dots show global energy minima. 

M.-S. Chorsi et al.                                                                                                                                                                                                                              



Nano Today 56 (2024) 102247

5

Mechanisms to control the motions of cyclic peptides 

Our strategy for building cyclic peptides is to design a simple 
mechanism with controllable motion along a single DOF. Our compu-
tational framework enables us to evaluate the energy profile along this 
DOF under the effect of different environmental conditions, permitting 
prediction of external perturbations that can alter the lowest-energy 
state in a desired way. Environmental parameters must be adjusted to 
find the optimum variation scenario for achieving the desired motion 
and function. 

Fig. 2a presents the full range of motion of the class III GPGPP cyclic 
peptide. The two solution curves revealed by our kinetostatic method 
meet at two singular positions. In these positions, the control angle is no 
longer able to move the molecule and the mechanical advantage of the 
mechanism goes to zero. Using these solution curves, we can simulate 
the range of motion of the GPGPP peptide (Movie S1). To further 
investigate these singular positions, we determined the complete energy 
profile for the calculated solution curves (Fig. 2b). We observed that the 
singular positions contain either a very high or very low amount of 
energy, depending on the solution curve. For the first solution, the sin-
gularities are the maxima, whereas these positions are the minima for 
the second solution. This is in agreement with a longstanding perception 
in biology that stable molecular states are confined with reasonably 
large energetic barriers [140]. Therefore, we propose that these kine-
matic singular positions could be the reason for such large energy bar-
riers, as they hinder molecular motion. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nantod.2024.102247. 

We ran molecular dynamics simulations to explore the conforma-
tional change of our designed macrocycles at different temper-
atures—and thereby assess whether temperature could be used to 
control molecular motion (see Methods; Fig. 2c). As predicted by our 
kinematic method, GPGPP does not undergo a large conformational 
change as temperatures changes, but rather a small change in internal 
diameter (~1 Å). This was further confirmed by temperature-dependent 
NMR spectra that did not show any signal collapse (Fig. 2d). We 
conclude that while temperature is not an effective means of controlling 
the conformation or motions of this peptide, its motions (and by 
extension, a function that could be engineered to depend on these mo-
tions) remain consistent across a range of temperatures. 

In order to stimulate a biomolecule to go from one conformation to 
another, the morphology of the energy profile must somehow change to 
give rise to displacement of the global minimum (theoretically associ-
ated with the dominant conformational structure) in the energy profile 
along the axis (axes) associated with the conformational change of the 
molecule, and consequently to give motion to it. One possible way of to 
influencing influence peptide conformation is with an electric field, and 
we used two different models to examine potential impacts of uniform 
electric fields based on a charged-plate model and a multipole power 
series expansion model. A uniform electric field is one in which a 
molecule experiences the same intensity and direction of electric field 
lines regardless of the position of any of its atoms in space. This means 
that the electric field lines are both parallel and evenly spaced. We 
examined two ways to represent a uniform electric field and analyzed 
their application in the form of energy and force applied. Fig. 2e shows 
the simulated structural change of the GPGPP cyclic peptide under a 
variable electric field applied by two oppositely-charged plates. The 
curves represent the energy profile associated with the range of motion 
of the molecule under a given electric field condition, and the red dot 
indicates the location of the energetic minimum, and thus the favorable 
configuration. Changes in the electric field cause changes in the energy 
profile, and consequently, in the location of the global minimum. The 
changes in the conformation are subtle in this case. Non-uniform electric 
fields are more practical and realistic external field environments. Since 
all charged particles generate electric field lines, a simple charged par-
ticle in proximity to a molecule generates a non-uniform external 

electric field that interacts with that molecule. Fig. 2f shows one 
example of this scenario, where a charged particle (5×103 C) is shifted in 
the xy-plane at a fixed distance of 15 Å away from GPGPP. The results of 
these two models are not intended to conclusively prove that one model 
is superior, but simply to show how force field perturbations can be 
implemented for our controllable cyclic peptides. For the GPGPP pep-
tide, which has a narrow range of mobility, we would expect shifts to be 
very small, but for larger and more flexible cyclic peptides, these models 
might show larger shifts in global minimum energy. 

Supramolecular assemblies of the controllable cyclic peptides 

The 1-DOF controllable cyclic peptides proposed here can be further 
combined to build supramolecular assemblies with more complex 
functions. These assemblies, which are loosely connected by hydrogen 
bonds, could move around, transport objects, and complete other tasks. 
This concept is reminiscent of “particle robots,” [141] in which deter-
ministic locomotion is a result of the stochastic radial movement (i.e., 
oscillations) of many loosely-coupled, disc-shaped components, but on a 
much smaller scale. 

Fig. 3a presents the assembled structure for different classes of 
controllable cyclic peptides (see the procedure in Methods and Movie 
S2). The five-residue peptides PPPGC and GPGPP form a unique sheet- 
like structure that is distinct from that of the other cyclic peptides. 
This interesting architecture is even noticeable at the microscale, as can 
be seen in scanning electron microscopy (SEM) images (Fig. 3b). In 
addition, SEM images of the CGPG peptide reveal hierarchical organi-
zation of needle-like crystals that are ~2 µm in diameter. This hierar-
chical arrangement suggests a controlled assembly process involving 
directed growth. Nucleation likely starts from specific molecular ar-
rangements or nuclei, which then propagate into microneedles through 
a regulated growth mechanism. Peptide-peptide interactions, influenced 
by the specific structural features of the CGPG sequence, may contribute 
to the formation of these well-oriented microneedles. Growth kinetics 
and the interplay between intermolecular forces are crucial factors 
governing the hierarchical organization and growth of these assemblies. 
For the CGPG cyclic peptide in particular, hydrogen bonding might 
primarily involve interactions between backbone amide groups and 
carbonyl groups within the peptide chain. The side chains of the amino 
acids might also contribute to intra- and intermolecular hydrogen 
bonding interactions. Surprisingly, even after an extended incubation 
time (2 months), the structural features remained unchanged (Fig. S16), 
demonstrating the robustness and stability of the observed 
configurations. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nantod.2024.102247. 

PPPPPPP assemblies form spherical structures (Fig. 3b), indicating 
potential liquid-liquid phase separation during the early stages of self- 
assembly. In this proposed model, the solution separates into different 
liquid domains due to specific molecular interactions and local con-
centration variations. These separated phases subsequently evolve into 
the observed spherical formations as assembly progresses. In this sce-
nario, nucleation and growth may involve the coalescence and evolution 
of these separated domains into defined structures. The repetition of 
proline residues in this 1-DOF construct might influence the hydrogen 
bonding capabilities within the cyclic peptide. As a secondary amine, 
proline might engage in hydrogen bonding interactions with adjacent 
peptide chains, primarily through its backbone amide and carbonyl 
groups. The resultant hydrogen bonding patterns could play a role in the 
observed formation of spherical structures during the early stages of self- 
assembly. Our observations align with recent studies [142,143] 
demonstrating similar assembly mechanisms in peptide systems. 

To determine the supramolecular structure of the assembled cyclic 
peptides, we used circular dichroism (CD) and Fourier transform 
infrared (FTIR) spectroscopy. CD spectra showed negative bands at 
218 nm and positive bands at 195 nm for PPPGC and GPGPP assemblies, 
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consistent with β-sheet structure (Fig. 3c) [144]. However, since these 
sequences possess only two hydrogen bond donors, the actual structure 
can only be sheet-like. The other assemblies showed very weak CD signal 
above 210 nm, with a negative band near 195 nm, representative of 

random coils [144]. FTIR spectra exhibited a sharp disulfide peak at 
561 cm− 1 for the cysteine-containing CGPG and PPPGC peptides; as 
expected, the other peptides do not show such a peak (Fig. 3d). 

Based on the CD and FTIR data, we simulated the molecular structure 

Fig. 3. Supramolecular assemblies of the controllable cyclic peptides. a, Light microscopic images of self-assembled structures formed by five different 1-DOF 
macrocycles. b, SEM micrographs of these same assemblies. c, Circular dichroism (CD) spectroscopy data collected for these assemblies at 25 ◦C. d, Fourier transform 
infrared (FTIR) spectra of the cyclic assemblies. e, f, Molecular structure of self-assembled (e) GPGPP and (f) PPPGC cyclic peptides based on CD and FTIR data. The 
models were constructed by manually docking an energy-minimized model of macrocycles until the hydrogen bonds were detected. 
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of GPGPP (Fig. 3e) and PPPGC (Fig. 3 f) assemblies arranged into 
nanotube structures through sheet-like hydrogen bonding. It should be 
noted that sheet-like assembly has been reported for other small cyclic 
peptides as well, which is consistent with our results [145–149]. Our 
models were constructed by manually docking an energy-minimized 
model of the macrocycles until hydrogen bonds were detected. The 
GPGPP assembly creates a continuous circular core (~6.5 Å in diameter) 
that can extend over millions of molecular units, a unique situation in 

biological materials. The PPPGC assembly forms two circular cores 
(~7 Å in diameter) due to disulfide bond formation. The most notable 
repetitive feature here is a set of β-sheets that are parallel to the long axis 
of the assembly, whereas the corresponding strands are perpendicular to 
this axis. These results indicate the stacking of distinctive units rather 
than β-strands, as is also suggested by the secondary structure analysis. 

Our simulated molecular structures demonstrate that the self- 
assembly of PPPGC and GPGPP peptides into nanotubular structures is 

Fig. 4. Mechanical properties and biocompatibility of supramolecular biomaterials composed of controllable cyclic peptides. a, Atomic force microscopy 
(AFM)-derived height and calculated Young’s modulus maps for cyclic peptide assemblies at 25 and 80 ◦C. b, Mean Young’s modulus calculations from AFM 
indentation mapping (excluding pores), with standard error bars. c, In vitro biocompatibility of PPPGC film. Imaging of mouse adipose-derived stem cells (mADSC) 
incubated with or without PPPGC film at 37 ◦C for 7 days. Live cells are stained green (calcein AM) and dead cells are staind red (BOBO-3 iodide). d, Statistical 
analysis of the cell imaging assay data with two-ways ANOVA followed by Tukey’s post-hoc analysis (n = 5). e, Images of degradation of a PPPGC film over time in 1X 
PBS buffer (pH 7.4) at 37 ◦C. 
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driven by the cooperative interplay of β-sheet hydrogen bonding and 
hydrophobic interactions. These peptides possess alternating proline 
and glycine residues in their cyclic form that promote the formation of 
β-sheets. Proline’s rigid pyrrolidine ring restricts backbone flexibility, 
favoring extended conformations that are suitable for β-sheet assembly 
[150]. Additionally, the strategic positioning of proline residues every 
three or four positions introduces kinks in the polypeptide chain, facil-
itating the β-turn formation necessary for sheet closure [151]. Glycine’s 
small size minimizes steric clashes, enabling tight packing of β-strands 
within the sheet. These β-sheets then stack upon each other, stabilized 
by intermolecular hydrogen bonding between carbonyl and amide 
groups, forming the observed nanotubular architectures [152]. 

Generating functional biocompatible/biodegradable supramolecular 
biomaterials from 1-DOF cyclic peptides 

To explore the potential application of these controllable cyclic 
peptides as functional supramolecular biomaterials and study the 
macroscopic manifestation of the sheet-like structure of the PPPGC and 
GPGPP assemblies, we analyzed the mechanical properties of all the 
peptides using atomic force microscopy (AFM) imaging and indentation 
mapping (details in Methods). We acquired AFM height and calculated 
Young’s modulus (E) data at two different temperatures, 25 ◦C and 80 ◦C 
(Fig. 4a). We could identify several trends that inform the material 
properties of these assemblies. For instance, mechanical properties are 
directly related to the size of the biomolecules, and we saw high 
modulus values for the small peptides CGPG and PPPGC, whereas the 
other peptides showed a very low modulus (Fig. 4b). Interactions be-
tween side-chain groups can further modulate the mechanical properties 
of these assemblies, and cysteine-containing assemblies showed very 
high modulus values because of strong disulfide bond formation. These 
disulfide bridges serve as stabilizing elements, reinforcing the in-
teractions between individual peptide chains within the assembly [153]. 
This would also explain the notable differences between the 
equally-sized PPPGC and GPGPP peptides. Notably, the GPGPP assem-
bly retains a stable β-sheet arrangement even at 80 ◦C, similar to PPPGC 
(Fig. S18). Consequently, highly organized assemblies of short cyclic 
peptides have a larger modulus than less organized assemblies 
composed of longer peptides. These observations suggest that the 
packing of shorter cysteine-containing cyclic peptides into sheet-like 
structures contributes to greater structural rigidity at high tempera-
tures [154,155]. Indeed, the PPPGC assembly achieves a remarkably 
high modulus of 10 GPa at 80 ◦C, and we believe that the incorporation 
of cysteine contributes greatly to its higher-order structure, rigidity, and 
stability at elevated temperatures [156]. These AFM results indicate that 
even with short peptide sequences, one can modulate the characteristics 
of higher-order assemblies in a predictable manner through amino acid 
modification. The examination of thermodynamic and kinetic aspects of 
self-assembly places a particular emphasis on temperature-dependent, 
macroscopic changes in Gibbs free energy [157]. This analysis high-
lights the intricate balance between entropic and enthalpic contribu-
tions, a competition shaped by temperature variations within the 
system, which govern the fundamental aspects of peptide self-assembly. 
The PPPGC supramolecular structure is extremely stiff at 80 ◦C, with an 
E value comparable to the most rigid proteinaceous materials found in 
nature, such as silk (E = 1–10 GPa) [158,159], collagen (E = 1–9 GPa) 
[160,161], and keratin (E = 1.4–8 GPa) [162,163]. However, the 
unique advantage of PPPGC over these materials is that this modulus 
peaks at high temperatures, whereas other materials experience the 
inverse response to temperature. This could be highly advantageous for 
the design of rigid and stable biomaterials for sensing technology and 
stimulus-responsive soft materials. 

We also examined the biocompatibility of PPPGC assemblies by 
imaging the effects of these films on the viability of mouse adipose- 
derived stem cells (mADSC). The mADSCs were seeded onto the films 
at 37 ◦C for 7 days, and stained with calcein AM to discriminate live cells 

based on intracellular esterase activity; dead cells were labeled with 
BOBO-3 Iodide, which detects the presence of nucleic acids in damaged 
membranes (Fig. 4c). The number of viable cells on PPPGC films was 
similar to that of the cells-only control, demonstrating that the film is not 
cytotoxic (Fig. 4d). Finally we conducted a degradation experiment to 
determine the functional lifetime of PPPGC film, and demonstrated the 
film self-degrades within five minutes in phosphate buffered saline 
(PBS) at 37 ◦C (Fig. 4e). This suggests that these structures must be 
encapsulated to achieve finer control over device degradation. 

Conclusions 

We present a design strategy for generating modular controllable 1- 
DOF cyclic peptides with programmed one-dimensional motions. These 
peptides have major advantages over other nanoscale cyclic structures, 
including sub-nanometer control over the internal diameter, and the 
potential to control internal and external chemical functionality under 
different external stimuli. We studied the self-assembly of these cyclic 
peptides and determined that PPPGC- and GPGPP-based assemblies 
form nanotube-like structures through β-sheet hydrogen bonding. 
Moreover, the presence of cysteine in PPPGC creates a higher-order 
structure with remarkable rigidity and stability at high temperatures, 
with a Young’s modulus of 10 GPa at 80 ◦C—comparable to the most 
rigid proteinaceous materials in nature, such as silk, collagen and ker-
atin. Unlike these materials, however, our PPPGC assembly demon-
strates a direct relation with temperature which makes it suitable for the 
development of unique functional, biocompatible, and biodegradable 
supramolecular biomaterials. 

While our study highlights the promising attributes of ultra-confined, 
controllable cyclic peptide assemblies as biomaterials, challenges 
remain that could hinder their broader application. Scalability and cost- 
effectiveness could be potential challenges, as the specific synthesis 
techniques involved in creating these assemblies may not be compatible 
with large-scale production. Furthermore, integrating these cyclic pep-
tides assemblies with other materials or existing biomedical technolo-
gies might pose compatibility issues that require further exploration. 
Overcoming these challenges might necessitate advancements in syn-
thetic biology to enable more efficient and cost-effective synthesis 
methods, as well as deeper investigations into compatibility with other 
biomaterials. 

In summary, this study explores the self-assembly behaviors and 
structural characteristics of ultra-confined cyclic peptides, revealing 
their remarkable stability, intricate high-order structures, and fasci-
nating mechanical properties. The insights pertaining to their structure- 
property relationships lay the groundwork for the rational design of 
novel peptide-based materials tailored to achieve specific functional-
ities, and the ongoing exploration of these peptide assemblies could 
open new avenues for practical applications in a wide range of domains 
including reconfigurable nanomaterials, stimuli-responsive bio-
materials, and thermally stable nanosheets. 

Methods 

Peptide synthesis 

Peptides were synthesized using standard Fmoc solid phase peptide 
synthesis (SPPS) on preloaded 2-chlorotrityl chloride resin. After the 
final Fmoc deprotection, the resin-bound linear peptide was treated with 
2% (v/v) hydrazine monohydrate in dimethylformamide (DMF, Sigma- 
Aldrich, anhydrous, ≥99.9%) to remove the C-terminal protecting 
group. Subsequently, the N- and C-termini were coupled in a liquid- 
phase coupling reaction performed after cleaving the protected linear 
peptide from the resin. Crude peptides were purified using an Agilent 
Infinity Preparative HPLC to more than 98%, as verified by HPLC fol-
lowed by mass spectrometry confirmation of their identity (Supple-
mentary Fig. S7–S11). Details of the synthesis process in provided in 
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Supplementary Note S2. All peptides were stored at − 80 ◦C. 

Kinetostatic design 

Cyclic peptides are modeled as kinematic chains, which is a common 
method in protein design and protein folding [164]. The DOF of a chain 
could be determined using Grübler–Kutzbach criterion. Zero-position 
notation was used to characterize the links and joints of the poly-
peptide chain, where all vectors for joint axes and directions were 
defined by a single-base coordinate system with a chosen point of origin, 
or zero-position. The zero-position acts as our reference point from 
which we extend the position of the next link in the kinematic linkage, 
successively applying the next dihedral angle in the chain to calculate 
the next link position. To convert the open-loop peptide chain to a 
closed-loop macrocycle, the last link (end effector) must be positioned 
and oriented at the base of the first link. Analytically, this results in a 
system of nonlinear equations referred to as loop-closure equations. 
Zero-position formulation yields 12 equations with 7 unknowns. To 
solve this system of nonlinear equations, we utilized the MATLAB un-
constrained nonlinear system solver, fminunc. Further details of the 
kinetostatic method and electric field excitations are presented in Sup-
plementary Note S1. 

Rosetta modeling 

We used the Rosetta simple_cycpep_predict application [164,165], to 
sample conformations and predict structures of cyclic peptides CGPG, 
PPPGC, GPGPP, PPPPPG, and PPPPPPP. Like Protofold [166], Rosetta 
uses robotics-inspired kinematic closure methods to sample closed 
conformations of peptides. However, where the initial design methods 
using Protofold solved for exactly seven degrees of backbone confor-
mational freedom, keeping all constrained degrees of freedom at ideal 
values, Rosetta is able to sample more broadly. Since smaller cyclic 
peptides are often strained, we added support for sampling small de-
viations from ideal bond lengths and bond angles, as described in 
Supplementary Note S3. We carried out simulations with torsion-space 
relaxation of sampled conformations (in which bond angles and bond 
lengths were fixed to their sampled values), and with and without a final 
round of Cartesian-space relaxation (in which bond angles and bond 
lengths were permitted to change during relaxation). The Rosetta 
ref2015 and ref2015_cart energy functions [167] were used for 
torsion-space and Cartesian-space relaxations, respectively, and for final 
scoring. All predictions were carried out blindly, without knowledge of 
the initial design models or of NMR structures when available. Full de-
tails and instructions for reproducing these simulations are in Supple-
mentary Note S3. 

NMR spectroscopy 

Each cyclic peptide was dissolved at concentrations of ~5 mg/ml in 
dimethyl sulfoxide-d6 (Sigma-Aldrich). NMR data were collected on a 
Bruker AVANCE 500 MHz or Varian INOVA 600 MHz spectrometer 
equipped with a triple-resonance (1H, 13C, 15N) inverse cryogenic probe. 
Resonance assignments were obtained using standard procedures. Data 
were processed in TOPSPIN v 3.5 (Bruker) and analyzed in Sparky or 
CCPN NMR Analysis v2.5. Structures were calculated in CNS (Crystal-
lography & NMR System). The preliminary structures were calculated in 
Cyana followed by refinement in CNS. For temperature-dependent NMR, 
data were also collected at 40, 60, and 80 ◦C. 

Molecular dynamics (MD) simulations 

MD simulations were performed using the NAMD [168] and 
CHARMM22 force field [169]. The cut-off distance for van der Waals 
interactions was set to 12 Å. The whole system was heated from 0 K to 
298.15 K, 313.15 K, 333.15 K, and 353.15 K over a 62-ps simulation 

using weakly-coupled Langevin dynamics, and the target temperature 
was then maintained. Pressure was maintained at 1 atm using a Lan-
gevin piston Nose-Hoover barostat (with a piston period of 100 fs and a 
decay time of 50 fs). The LINCS algorithm was applied at each step to 
preserve bond lengths. The temperature and volume of each system 
were equilibrated by running 400 ps of constant-volume, con-
stant-temperature (NVT) simulation, followed by 400 ps of 
constant-pressure, constant-temperature (NPT) simulations. Production 
runs in the NPT ensemble were then conducted for 20 ns. 

Self-assembly process of the cyclic peptide 

Peptides were dissolved in 2 mM phosphate buffer (Alfa Aesar) at 
pH 8.0 at a concentration of 5 mg/ml. The samples were incubated at 
20 ◦C for five days with frequent shaking before examination. 

Scanning electron microscopy 

Peptides were dissolved in 2 mM phosphate buffer at pH 8.0 at a 
concentration of 5 mg/ml. Samples were incubated at 20 ◦C for five days 
with frequent shaking before examination. A 5 μl aliquot was allowed to 
dry on a microscope glass coverslip under ambient conditions overnight 
and sputter-coated with Au/Pd (5 nm thickness) using a sputter coater 
(CCU-010, Safematic). The samples were then imaged using a Verios 
460 L SEM at 15 keV and 2500X magnification. Data collection and 
analysis were carried out with xT microscope Control software. 

Circular dichroism spectroscopy 

CD spectra were recorded on an Applied Photophysics Pi-Star 180 
spectropolarimeter (Surrey, UK) using a 1-mm path-length cuvette with 
3 mg of peptide in 2 mM sodium phosphate buffer. Wavelength scans 
were collected between 190 and 280 nm using a 2 nm bandwidth, 2 nm 
step size, and 30 s/point data averaging for a total scan time of ~15 min. 

Fourier transform infrared spectroscopy 

FTIR spectra were acquired with a Nicolet Magna 560 (Thermo 
Fisher Scientific) and attenuated total reflectance (ATR) ZnSe. The 
samples were cast directly onto the ATR crystal. Measurements were 
performed and analyzed at several areas. Prior to each experiment, the 
diamond lens was cleaned using acetone, followed by deionized water. 
The FTIR spectra were background subtracted and baseline corrected 
with OMNIC software v.8.3.103. 

Atomic force microscopy 

Peptides were dissolved in 2 mM phosphate buffer, pH 8.0 at a 
concentration of 5 mg/ml. The samples were incubated at 20 ◦C for five 
days with frequent shaking before examination. AFM images were taken 
by depositing 5 µl solutions onto freshly cleaved V1 grade mica (Ted 
Pella). Modulus maps were generated using an MFP-3D-Bio Atomic 
Force Microscope (Oxford Instruments Asylum Research) and an AC-160 
probes (Olympus) [170]. Heights and forces were measured simulta-
neously during indentation over a 50 ×50 array of locations equally 
spaced across a 50 ×50 µm2 area, for a total of 2500 force curves per 
map. Each force curve was measured with 2 µm/s approach and 
retraction velocities and 5 µN trigger force (max load). All samples were 
first studied at room temperature, then a PolyHeater accessory (Oxford 
Instruments Asylum Research) was energized for in situ heating to 80 ◦C. 
The system was allowed to stabilize for 10 minutes, and indentation 
arrays were then re-acquired. The modulus for each indentation curve 
was calculated using the punch indentation model with a contact radius 
of 50 nm and assumed sample Poisson ratio of 0.33. Finally, masks were 
generated from each respective height map in order to remove any 
extraneous measurements from within the topographic pores (where 
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indentation measurements are prone to artifacts from the substrate or 
edge effects). This was achieved using a simple height threshold based 
on the plane of the assembled cyclic peptides, thus excluding measure-
ments from lower depths (i.e., in pores). Occasional indentations do not 
result in physically reasonable fits as well and are thus also removed 
from further analysis (< 2.2% of all measurements). Final error bars in 
Fig. 4b indicate the resulting standard error for each modulus map, 
based on N values ranging from 1525 individual measurements (for the 
most porous specimen, the PPPGC, which is 61% smooth film and 39% 
pores) to nearly 100% of the 2500 distinct indentations at each tem-
perature per specimen. 

Cell imaging assay 

Mouse adipose-derived stem cells (mADSC, iXCells Biotechnologies) 
were cultured in Dulbecco’s Modified Eagle’s Medium supplemented 
(Gibco) with 10% fetal bovine serum (Gibco) and 1% penicillin- 
streptomycin (Gibco) at 37◦C and 5% CO2. At 80–90% confluence of 
passage 4, the cells were detached from the flasks using trypsin/EDTA 
(Gibco) and seeded onto PPPGC films at a density of 5 × 106 cells/ml. 
After seven days, the cells were stained with a LIVE/DEAD cell imaging 
kit (Invitrogen) and imaged with a Leica SP8 confocal laser microscope 
with excitation/emission at 488 nm/515 nm and 570 nm/602 nm. 

Film degradation assay 

PPPGC peptide was dissolved in 2 mM phosphate buffer (Alfa Aesar) 
at pH 8.0 at a concentration of 5 mg/ml. The sample was incubated at 
20 ◦C for five days with frequent shaking before examination. A 20 μl 
aliquot was allowed to dry on a microscope glass coverslip under 
ambient conditions overnight and later carefully removed using a 
tweezer. The PPPGC film was placed in a glass dish filled with 5 ml of 
PBS (Gibco, pH 7.4) for degradation at room temperature. 
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